COSMOS-LIVE.COM

Site about space and the universe

Мкс Онлайн
ISS ONLINE
Space Online
HEADER 1
NASA TV
[wpmegamenu menu_location="top"]

What Makes the Artemis Moon Mission NASA’s Next Leap Forward?

What Makes the Artemis Moon Mission NASA's Next Leap Forward?

What Makes the Artemis Moon Mission NASA’s Next Leap Forward?

From left to right: A grey hollow pyramid-shaped lightning tower, the white Orion spacecraft and the top of the Space Launch System (SLS) rocket in orange, the Moon in faint white and gray, the Mobile Launcher with many pipes and levels in gray and red. The background is blue skies. Credit: NASA/Ben SmegelskyALT

When NASA astronauts return to the Moon through Artemis, they will benefit from decades of innovation, research, and technological advancements. We’ll establish long-term lunar science and exploration capabilities at the Moon and inspire a new generation of explorers—the Artemis Generation.

Cloudy skies are the backdrop behind the SLS rocket and Orion spacecraft, which is reflected in the windows of a vehicle to the left of the photo. The SLS is orange with two white boosters on either side, and the spacecraft is white, next to a gray pyramid-shaped lightning tower and Mobile Launcher with many pipes and levels in gray and red. Credit: NASA/Aubrey GemignaniALT

Meet the Space Launch System rocket, or SLS. This next-generation super heavy-lift rocket was designed to send astronauts and their cargo farther into deep space than any rocket we’ve ever built. During liftoff, SLS will produce 8.8 million pounds (4 million kg) of maximum thrust, 15 percent more than the Saturn V rocket.

The SLS rocket and Orion spacecraft sit inside the Vehicle Assembly Building (VAB) at Kennedy Space Center. The rocket is orange, with two white boosters on either side. The Orion Spacecraft is at the top and white. The VAB has many levels with walkways, pipes, and structures around the rocket. Credit: NASA/Kim ShiflettALT

SLS will launch the Orion spacecraft into deep space. Orion is the only spacecraft capable of human deep space flight and high-speed return to Earth from the vicinity of the Moon. More than just a crew module, Orion has a launch abort system to keep astronauts safe if an emergency happens during launch, and a European-built service module, which is the powerhouse that fuels and propels Orion and keeps astronauts alive with water, oxygen, power, and temperature control.

The Space Launch System rocket stands upright on the launchpad. The background is the sky dominated by clouds. The rocket has an orange central fuel tank with two white rocket boosters on either side. The Crawler-Transporter 2 is in the foreground with its massive tread-like wheels. Credit: NASA/Kim ShiflettALT

Orion and SLS will launch from NASA’s Kennedy Space Center in Florida with help from Exploration Ground Systems (EGS) teams. EGS operates the systems and facilities necessary to process and launch rockets and spacecraft during assembly, transport, launch, and recovery.

An artist's depiction of Gateway, the Moon-orbiting space station. Gateway is seen in gray with red solar arrays; behind it, the Moon is gray, black, and white, as well as the blackness of space. Credit: NASA/Alberto BertolinALT

The knowledge we’ve gained while operating the International Space Station has opened new opportunities for long-term exploration of the Moon’s surface. Gateway, a vital component of our Artemis plans, is a Moon-orbiting space station that will serve as a staging post for human expeditions to the lunar surface. Crewed and uncrewed landers that dock to Gateway will be able to transport crew, cargo, and scientific equipment to the surface.

An artist's depiction of astronauts working on the Moon. The astronaut suits are white with silver helmets; they work on the gray lunar surface. Credit: NASAALT

Our astronauts will need a place to live and work on the lunar surface. Artemis Base Camp, our first-ever lunar science base, will include a habitat that can house multiple astronauts and a camper van-style vehicle to support long-distance missions across the Moon’s surface. Apollo astronauts could only stay on the lunar surface for a short while. But as the Artemis base camp evolves, the goal is to allow crew to stay at the lunar surface for up to two months at a time.

Astronaut Mark Vande Hei takes a selfie in front of Earth during the first spacewalk of 2018. His suit is white, the reflective helmet silver, and Earth is blue with white clouds. Credit: NASAALT

The Apollo Program gave humanity its first experience traveling to a foreign world. Now, America and the world are ready for the next era of space exploration. NASA plans to send the first woman and first person of color to the lunar surface and inspire the next generation of explorers.

An artist's depiction of Orion traversing above the surface of the Moon, with Earth in the background. Orion is white and gray, the Moon's shadowy surface is white and black, and the Earth is surrounded by the blackness of space and is faintly blue and black. Credit: NASA/Liam YanulisALT

Our next adventure starts when SLS and Orion roar off the launch pad with Artemis I. Together with commercial and international partners, NASA will establish a long-term presence on the Moon to prepare for missions to Mars. Everything we’ve learned, and everything we will discover, will prepare us to take the next giant leap: sending the first astronauts to Mars.

Make sure to follow us on Tumblr for your regular dose of space!

Leave a Reply

Your email address will not be published. Required fields are marked *