COSMOS-LIVE.COM

Site about space and the universe

Мкс Онлайн
ISS ONLINE
Space Online
HEADER 1
NASA TV
[wpmegamenu menu_location="top"]

It’s National Composites Week! Wait, what’s a composite?

It’s National Composites Week! Wait, what’s a composite?

This week, we’re celebrating National Composites Week, which CompositesWorld says is about shedding some light on how “composite materials and composites manufacturing contributes to the products and structures that shape the American manufacturing landscape today.”

image

What exactly are composites and why are we talking about them?

Composites are building materials that we use to make airplanes, spacecraft and structures or instruments, such as space telescopes. But why are they special?

Composites consist of two or more materials, similar to a sandwich. Each ingredient in a sandwich could be eaten individually, but combining them is when the real magic happens. Sure, you could eat a few slices of cold cheese chased with some floppy bread. But real talk: buttery, toasted bread stuffed with melty, gooey Gouda makes a grilled cheese a much more satisfying nosh.

With composites—like our sandwich—the different constituent parts each have special properties that are enhanced when combined. Take carbon fibers which are strong and rigid. Their advantage compared to other structural materials is that they are much lighter than metals like steel and aluminum. However, in order to build structures with carbon fibers, they have to be held together by another material, which is referred to as a matrix. Carbon Fiber Reinforced Polymer is a composite consisting of carbon fibers set in a plastic matrix, which yields an extremely strong, lightweight, high-performing material for spacecraft.

Composites can also be found on the James Webb Space Telescope. They support the telescope’s beryllium mirrors, science instruments and thermal control systems and must be exquisitely stable to keep the segments aligned.

image

We invest in a variety of composite technology research to advance the use of these innovative materials in things like fuel tanks on spacecraft, trusses or structures and even spacesuits. Here are a few exciting ways our Space Technology Mission Directorate is working with composites:

Deployable structures on small spacecraft

We’re developing deployable composite booms for future deep space small satellite missions. These new structures are being designed to meet the unique requirements of small satellites, things like the ability to be packed into very small volumes and stored for long periods of time without getting distorted.

A new project, led by our Langley Research Center and Ames Research Center, called the Advanced Composite Solar Sail System will test deployment of a composite boom solar sail system in low-Earth orbit. This mission will demonstrate the first use of composite booms for a solar sail in orbit as well as new sail packing and deployment systems.

image

Nano (teeny tiny) composites

We are working alongside 11 universities, two companies and the Air Force Research Laboratory through the Space Technology Research Institute for Ultra-Strong Composites by Computational Design (US-COMP). The institute is receiving $15 million over five years to accelerate carbon nanotube technologies for ultra-high strength, lightweight aerospace structural materials. This institute engages 22 professors from universities across the country to conduct modeling and experimental studies of carbon nanotube materials on an atomistic molecular level, macro-scale and in between. Through collaboration with industry partners, it is anticipated that advances in laboratories could quickly translate to advances in manufacturing facilities that will yield sufficient amounts of advanced materials for use in NASA missions.

Through Small Business Innovative Research contracts, we’ve also invested in Nanocomp Technologies, Inc., a company with expertise in carbon nanotubes that can be used to replace heavier materials for spacecraft, defense platforms, and other commercial applications.

image

Nanocomp’s Miralon™ YM yarn is made up of pure carbon nanotube fibers that can be used in a variety of applications to decrease weight and provide enhanced mechanical and electrical performance. Potential commercial use for Miralon yarn includes antennas, high frequency digital/signal and radio frequency cable applications and embedded electronics. Nanocomp worked with Lockheed Martin to integrate Miralon sheets into our Juno spacecraft.

image

Composites for habitats

At last spring’s 3D-Printed Habitat Challenge the top two teams used composite materials in their winning habitat submissions. The multi-phase competition challenged teams to 3D print one-third scale shelters out of recyclables and materials that could be found on deep space destinations, like the Moon and Mars.

After 30 hours of 3D-printing over four days of head-to-head competition, the structures were subjected to several tests and evaluated for material mix, leakage, durability and strength. New York-based AI. SpaceFactory won first place using a polylactic acid plastic, similar to materials available for Earth-based, high-temperature 3D printers.

image

This material was infused with micro basalt fibers as well, and the team was awarded points during judging because major constituents of the polylactic acid material could be extracted from the Martian atmosphere.

image

Second place was awarded to Pennsylvania State University who utilized a mix of Ordinary Portland Cement, a small amount of rapid-set concrete, and basalt fibers, with water.

image

These innovative habitat concepts will not only further our deep space exploration goals, but could also provide viable housing solutions right here on Earth.

Student research in composites

We are also supporting the next generation of engineers, scientists and technologists working on composites through our Space Technology Research Grants. Some recently awarded NASA Space Technology Fellows—graduate students performing groundbreaking, space technology research on campus, in labs and at NASA centers—are studying the thermal conductivity of composites and an optimized process for producing carbon nanotubes and clean energy.

It’s National Composites Week! Wait, what’s a composite?

We work with composites in many different ways in pursuit of our exploration goals and to improve materials and manufacturing for American industry. If you are a company looking to participate in National Composites Week, visit: https://www.nationalcompositesweek.com.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

Leave a Reply

Your email address will not be published. Required fields are marked *