Site about space and the universe

Мкс Онлайн
Space Online
[wpmegamenu menu_location="top"]

For the Benefit of All: Assistive Tech Developed from NASA Tech

For the Benefit of All: Assistive Tech Developed from NASA Tech

A girl wears a pair of black Narbis smart glasses that are connected to a black armband while she is writing in a notebook, with a tablet nearby.

Credit: NarbisALT

For the Benefit of All: Assistive Tech Developed from NASA Tech

What do modern cochlear implants and robotic gloves have in common? They were derived from NASA technology. We’ve made it easier to find and use our patented inventions that could help create products that enhance life for people with disabilities.

October is National Disability Employment Awareness Month, which highlights the contributions of American workers with disabilities – many of whom use assistive technology on the job. Take a look at these assistive technologies that are NASA spinoffs.

The JORDY device, which is comprised of a gold and black visorlike headset and an attached black control device.

Credit: Enhanced VisionALT

Low-Vision Headsets

The Joint Optical Reflective Display (JORDY) device is a headset that uses NASA image processing and head-mounted display technology to enable people with low vision to read and write. JORDY enhances individuals’ remaining sight by magnifying objects up to 50 times and allowing them to change contrast, brightness, and display modes. JORDY’s name was inspired by Geordi La Forge, a blind character from “Star Trek: The Next Generation” whose futuristic visor enabled him to see.

A girl with brown hair has a tan cochlear implant device placed behind her ear by another person’s hands.

Credit: GettyALT

Cochlear Implants

Work that led to the modern cochlear implant was patented by a NASA engineer in the 1970s. Following three failed corrective surgeries, Adam Kissiah combined his NASA electronics know-how with research in the Kennedy Space Center technical library to build his own solution for people with severe-to-profound hearing loss who receive little or no benefit from hearing aids. Several companies now make the devices, which have been implanted in hundreds of thousands of people around the world.

A man wears the Ironhand robotic glove, which is black and connected to a black and orange vest. He is using it with a blue and white power tool under a white car hood.

Credit: Bioservo Technologies/Niklas LagströmALT

Robotic Gloves

Ironhand, from Swedish company Bioservo Technologies, is the world’s first industrial-strength robotic glove for factory workers and others who perform repetitive manual tasks. It helps prevent stress injuries but has been especially warmly received by workers with preexisting hand injuries and conditions. The glove is based on a suite of patents for the technology developed by NASA and General Motors to build the hands of the Robonaut 2 humanoid robotic astronaut.

The Narbis smart glasses set: a pair of black glasses, equipped with brainwave sensors; a black, rectangular Bluetooth-enabled amplifier on an armband; and a black, rectangular tablet with training programs

Credit: NarbisALT

Smart Glasses

Neurofeedback technology NASA originally developed to improve pilots’ attention has been the basis for products aimed at helping people manage attention disorders without medication. The devices measure brainwave output to gauge attention levels according to the “engagement index” a NASA engineer created. Then, they show the results to users, helping them learn to voluntarily control their degree of concentration. One such device is a pair of smart glasses from Narbis, whose lenses darken as attention wanes.

A woman in exercise clothes runs in the pressurized, enclosed anti-gravity G-Trainer treadmill.

Credit: Alter-G Inc.ALT

Anti-Gravity Treadmills

A NASA scientist who developed ways to use air pressure to simulate gravity for astronauts exercising in space had the idea to apply the concept for the opposite effect on Earth. After licensing his technology, Alter-G Inc. developed its anti-gravity G-Trainer treadmill, which lets users offload some or all of their weight while exercising. The treadmills can help people recover from athletic or brain injuries, and they allow a safe exercise regimen for others with long-term conditions such as arthritis.

Professional pianist Rui Urayama plays the piano while multiple sensors are attached to her forearms and hand muscles.

Credit: Delsys Inc.ALT

Wireless Muscle Sensors

Some of the most exciting assistive technologies to spin off may be yet to come. Delsys Inc. developed electromyographic technology to help NASA understand the effects of long-term weightlessness on astronauts’ muscles and movements. Electromyography detects and analyzes electrical signals emitted when motor nerves trigger movement. Among the company’s customers are physical therapists developing exercise routines to help patients recover from injuries. But some researchers are using the technology to attempt recoveries that once seemed impossible, such as helping paralyzed patients regain movement, letting laryngectomy patients speak, and outfitting amputees with artificial limbs that work like the real thing.  

To further enhance the lives of people with disabilities, NASA has identified a selection of patented technologies created for space missions that could spur the next generation of assistive technology here on Earth.

Want to learn more about assistive technologies already in action? Check out NASA Spinoff to find products and services that wouldn’t exist without space exploration.   

Make sure to follow us on Tumblr for your regular dose of space!

Leave a Reply

Your email address will not be published. Required fields are marked *