Site about space and the universe

Мкс Онлайн
ISS ONLINE
Space Online
NASA TV
[wpmegamenu menu_location="top"]

9 Out-of-This-World Moments for Space Communications & Navigation in 2023

9 Out-of-This-World Moments for Space Communications & Navigation in 2023

A time-lapse clip of a satellite dish. As it goes from day to night, the satellite changes position. Credit: NASAALT

9 Out-of-This-World Moments for Space Communications & Navigation in 2023

How do astronauts and spacecraft communicate with Earth?

By using relay satellites and giant antennas around the globe! These tools are crucial to NASA’s space communications networks: the Near Space Network and the Deep Space Network, which bring back science and exploration data every day.

It’s been a great year for our space communications and navigation community, who work to maintain the networks and enhance NASA’s capabilities. Keep scrolling to learn more about our top nine moments.

At night, a SpaceX rocket launches to the International Space Station from a launchpad at NASA’s Kennedy Space Center in Florida. Credit: SpaceXALT

The SpaceX Falcon 9 rocket carrying the Dragon spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Thursday, Nov. 9, 2023, on the company’s 29th commercial resupply services mission for the agency to the International Space Station. Liftoff was at 8:28 p.m. EST.

1. In November, we launched a laser communications payload, known as ILLUMA-T, to the International Space Station. Now, ILLUMA-T and the Laser Communications Relay Demonstration (LCRD) are exchanging data and officially complete NASA’s first two-way, end-to-end laser relay system. Laser communications can send more data at once than traditional radio wave systems – think upgrading from dial-up to fiber optic internet. ILLUMA-T and LCRD are chatting at 1.2 gigabits per second (Gbps). At that rate, you could download an average movie in under a minute.

NASA’s InSight lander sits covered in dust on Mars’ copper-brown surface in a “selfie” style image. Credit: NASAALT

NASA’s InSight lander captured this selfie on Mars on April 24, 2022, the 1,211th Martian day, or sol, of the mission.

2. Data analyzed in 2023 from NASA’s retired InSight Mars lander provided new details about how fast the Red Planet rotates and how much it wobbles. Scientists leveraged InSight’s advanced radio technology, upgrades to the Deep Space Network, and radio signals to determine that Mars’ spin rate is increasing, while making the most precise measurements ever of Mars’ rotation.

This image is an artist rendering. A dark blue and orange background containing the Pathfinder Technology Demonstrator-3 (PTD-3) hovering in low Earth orbit relaying a red laser communications link down to an image of the Jet Propulsion Laboratory’s optical ground station in Table Mountain California. This image of the ground station is located on top of a graphic of Earth. Credit: NASA/Dave RyanALT

TBIRD is demonstrating a direct-to-Earth laser communications link from low Earth orbit to a ground station on Earth.

3. We set a new high record! The TeraByte InfraRed Delivery (TBIRD) payload – also demonstrating laser communications like ILLUMA-T and LCRD – downlinked 4.8 terabytes of data at 200 Gbps in a single 5-minute pass. This is the highest data rate ever achieved by laser communications technology. To put it in perspective a single terabyte is the equivalent of about 500 hours of high-definition video.

A giant 34-meter antenna, surrounded by rolling green hills, points towards a bright blue sky in Canberra, Australia. Credit: NASAALT

A 34-meter (112-foot) wide antenna at Canberra Deep Space Communications Complex near Canberra, Australia.

4. This year we celebrated the Deep Space Network’s 60th anniversary. This international array of antennas located at three complexes in California, Spain, and Australia allow us to communicate with spacecraft at the Moon and beyond. Learn more about the Deep Space Network’s legacy and future advancements.

An artist's rendering depicts two astronauts on the Moon's surface. In the left foreground, a gloved astronaut hand holds a navigation device. To the right, an astronaut kneels on the lunar surface. In the background, a spacecraft sits on the Moon’s surface, partially hidden by the navigation device in the foreground. A very pale blue dot, Earth, sits in the middle of a dark blue sky. Credit: NASA/Reese PatilloALT

An illustration of the LunaNet architecture. LunaNet will bring internet-like services to the Moon.

5. We are bringing humans to the Moon with Artemis missions. During expeditions, astronauts exploring the surface are going to need internet-like capabilities to talk to mission control, understand their routes, and ensure overall safety. The space comm and nav group is working with international partners and commercial companies to develop LunaNet, and in 2023, the team released Draft LunaNet Specification Version 5, furthering development.

This image is an artist rendering. NASA’s Laser Communications Relay Demonstration, or LCRD, is shown floating in front of a blue star-filled space background on the right side of the image, while the Earth is shown in the distance on the left. LCRD is surrounded by three spacecraft in space and two ground stations on Earth. Communications beams are connecting LCRD to the surrounding spacecraft and ground stations. Red beams, representing laser communications, connect LCRD to the Gateway, the International Space Station, and a laser communications ground station on Earth. Blue beams, representing radio frequency communications, connect LCRD to a science mission spacecraft, the International Space Station, and a radio frequency ground station on Earth. A small half-Moon is visible in the top left corner of the image. Credit: NASAALT

The High-Rate Delay Tolerant Networking node launched to the International Space Station in November and will act as a high-speed path for data.

6. In addition to laser communications, ILLUMA-T on the International Space Station is also demonstrating high-rate delay/disruption tolerant networking (HDTN). The networking node is showcasing a high-speed data path and a store-and-forward technique. HDTN ensures data reaches its final destination and isn’t lost on its path due to a disruption or delay, which are frequent in the space environment.

This image is an artist rendering. A dark blue background containing small bright blue stars fills the scene. The right half of the illustration shows planet Earth surrounded by four blue satellites. The Earth is covered with many hundreds of bright blue dots and connecting lines, symbolizing communications signals traveling across the Earth’s surface. The communications lines connect to the satellites located in near-Earth orbit. Credit: NASAALT

The Communications Services Project (CSP) partners with commercial industry to provide networking options for future spaceflight missions.

7. The space comm and nav team is embracing the growing aerospace industry by partnering with commercial companies to provide multiple networking options for science and exploration missions. Throughout 2023, our commercialization groups engaged with over 110 companies through events, one-on-one meetings, forums, conferences, and more. Over the next decade, NASA plans to transition near-Earth services from government assets to commercial infrastructure.

In the right foreground, five people huddle around a laptop computer wearing clear protective goggles and black t-shirts. A tall, black divider with a flight operations insignia stands in the background next to a large machine. Credit: NASAALT

Middle and high school students solve a coding experiment during NASA’s Office of STEM Engagement App Development Challenge. 

8. Every year, NASA’s Office of STEM Engagement sponsors the App Development Challenge, wherein middle and high school students must solve a coding challenge. This year, student groups coded an application to visualize the Moon’s South Pole region and display information for navigating the Moon’s surface. Our space communications and navigation experts judged and interviewed students about their projects and the top teams visited NASA’s Johnson Space Center in Houston!

At night, a SpaceX rocket launches to the International Space Station from a launchpad at NASA’s Kennedy Space Center in Florida. Credit: SpaceXALT

A SpaceX Falcon 9 rocket soars upward after liftoff at the pad at 3:27 a.m. EDT on Saturday, Aug. 26, from Kennedy Space Center’s Launch Complex 39A in Florida carrying NASA’s SpaceX Crew-7 crew members to the International Space Station. Aboard SpaceX’s Dragon spacecraft are NASA astronaut Jasmin Moghbeli, ESA (European Space Agency) astronaut Andreas Mogensen, JAXA (Japan Aerospace Exploration Agency) astronaut Satoshi Furukawa, and Roscosmos cosmonaut Konstantin Borisov.

9. The Near Space Network supported 19 launches in 2023! Launches included Commercial Crew flights to the International Space Station, science mission launches like XRISM and the SuperBIT balloon, and many more. Once in orbit, these satellites use Near Space Network antennas and relays to send their critical data to Earth. In 2023, the Near Space Network provided over 10 million minutes of communications support to missions in space.

Here’s to another year connecting Earth and space.

Make sure to follow us on Tumblr for your regular dose of space!

Leave a Reply

Your email address will not be published. Required fields are marked *